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Recently germanium has emerged as a promising candidate for the development of high performance devices (CMOS) and 
its optoelectronic applications. Knowing the parameters of the dopant diffusion in this material is essential to perform 
efficient Ge-Based devices. This study determine how the temperature dependence of the ratio of the contributions to 
phosphorus diffusion in germanium from doubly negatively charged (2-) and triply negatively charged (3-) vacancies with 
activation energies 3.09 eV and 2.4 eV, respectively. In this work we modulate phosphorus diffusion in Ge by the vacancy 
mechanism and numerical solution of Fick’s second law, taking into account the dependence of the effective diffusion 
coefficient on the ratio of the contributions, and we simulate the experimental P diffusion profiles in Ge. 
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1. Introduction 
 

As dimensional scaling of CMOS devices reaches 

almost its fundamental limits, diverse research is being 

done to introduce novel structures and materials [1,2]  in 

order to continue the historic progress in information 

processing and transmission. High intrinsic carrier 

mobility, small band gap for supply voltage scaling and 

possible monolithic integration with Si based devices 

have prompted renewed interest in germanium [3-8]. For 

optical applications, Ge has a smaller absorption 

coefficient, which makes it attractive for monolithic 

integration of optical components for the ultimate use in 

optical interconnects in the wavelength range of 1.3-

1.55µm used in telecommunications [7]. This interest in 

Ge has stimulated studies on diffusion and activation of 

n- and p-type dopants in this semiconductor. The 

diffusion behavior of the n-type dopants in Ge is 

accurately described solely on the basis of the vacancy 

mechanism. In germanium the experimental 

observations indicated that the E center (a pair of a 

vacancy with a group V donor atom) has a double 

acceptor state [9,10] and supported the theoretical 

studies of Puska and Coutinho [11,12]
 

about the 

existence of a V
3-

 (triply negatively charged vacancy) in 

germanium. This vacany (V
3-

) contributes with V
2-

 

(doubly negatively charged vacancy) on the intrinsic and 

extrinsic diffusion of phosphorus in germanium [13]. In 

this paper, we have simulated the phosphorus profiles, 

taken from ref. [14], measured by means of a spreading 

resistance profiler (SRP) and secondary ion mass 

spectrometry (SIMS) to determine the ratio of the 

contributions at different temperatures for the diffusion 

of phosphorus via doubly negatively charged and triply 

negatively charged vacancies in germanium and then infer 

the activation energies for the diffusion of phosphorus via 

the two states of charge of the vacancies.  

This work which explains how the phosphorus diffuses 

in Ge can be a contribution with other previous studies [13-

15].  

 

 

2. Model used 
 

It is known in the literature that n-type dopants in 

germanium diffuse by a vacancy mechanism [13-18]. Taking 

into account that the diffusion of phosphorus occur via 

doubly and triply negatively charged vacancies[13] in the 

form of dopant-defect pairs or simple exchange, the effective 

diffusion coefficient takes the following form: 
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D
2-

 and D
3-

 successively presents the intrinsic diffusion 

coefficient via doubly negatively charged and triply 

negatively charged vacancies, where: 
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 β is the ration of the contributions for the diffusion from 

V
2-

 and V
3-

.  
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δg is the difference in the activation energies to P 

diffusion from Ge vacancies with the charge states 2- 

and 3-. T is the absolute temperature (in Kelvin), K is 

the Boltzmann constant and β0 is an adjustment factor 

for the ratio of the contributions. 

From the previous equations the effective diffusion 

coefficient is described by the following expression: 
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D
i
 and ni represent successively the intrinsic diffusion 

coefficient and the intrinsic carrier density. h is an 

enhancement factor arising due to an internal electric 

field: 
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and n is the concentration of free electron carriers which 

is calculated from the mass action law, assuming charge 

neutrality:  
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where c is the dopant concentration. 

 

 

3. Numerical simulation 
 

3.1. Numerical solution method of Fick’s  

       second law 

 

In macroscopic one-dimensional, scale, diffusion of 

phosphorus in Ge can under equilibrium conditions be 

described by Fick’s second law:  
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Where x is the spatial coordinate and t is the time. 

We solve equation (9) numerically, using finite 

difference approximations, specifically, the Backward Euler 

method. This method is an implicit finite difference method, 

which is unconditionally stable and has an accuracy of order 

O (Δt,Δx
2
). We discrete the space into N slices and we 

replace the partial derivatives in the equation (9) by the 

following finite difference approximations:  
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and: 
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Where i is the space index, j is the time index, Δx is the 

space increment and Δt is the time increment. 

From the equations (9) - (13) we get the relationship 

expressing the concentration at time jΔt and the 

concentration at time (j-1) Δt: 
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The boundary conditions are: 

 

                  0 1
j j

c c                                                 (15) 

 

                   1
j j

c cN N



                                          (16) 

 

From (14), (15), (16) we get the matrix that bind the 

concentration at time jΔt and the concentration at time        

(j-1)Δt:  
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3.2. Features of our program for simulating the  

       diffusion 

 

To simulate the experimental profiles of the 

phosphorus we accomplished a program by FORTRAN 

language where we relied on to solve the matrix 

equations that have been reached. The phosphorus 

concentration (c0) at surface of the sample is considered 

constant during the diffusion, and the phosphorus diffused in 

germanium according to the equation (14)  . D
eff

 has to be 

recalculated for every time step. We chose the values of the 

ratio of contributions which bring the coincidence of 

simulated profiles and experimental profiles. We have 

chosen the values of intrinsic carrier density and intrinsic 

diffusion coefficient according to the reference. [14]. 

  
Table 1:   Parameters used for these simulations. 

 

C0 (cm
-3

) t(s) T (°c) β ni(cm
-3

) D
i
(cm

2
s

-1
)

 

1.8×10
19 

36000 650 1.43 3.68×10
18 

2.52×10
-15

 

3.5×10
18

 25200 700 2 4.89×10
18

 0.85×10
-14

 

3.5×10
19

 6000 750 3.57 6.67×10
18

 8.37×10
-14

 

2.7×10
19

 1200 910 10 1.47×10
19

 6.56×10
-12

 

3.7×10
18

 864000 800 4 5.50×10
18

 3.78×10
-13

 

1.3×10
19

 604800 820 5 6.37×10
18

 5.8×10
-13

 

1.5×10
19

 590400 845 5.26 6.45×10
18

 1.14×10
-12

 

2.3×10
19

 252000 870 6.78 6.67×10
18

 2.29×10
-12

 

1.1×10
19

 72000 920 11.11 8.87×10
18

 7.8×10
-12

 

 
4. Results and discussion 
 

The simulated profiles and the experimental profiles 

concordance, in Fig. 1 and Fig. 2, confirm the 

contribution with V
2-

 and V
3-

 on the diffusion of 

phosphorus in germanium. 

 

 
 

Fig. 1. Simulated profiles (solid lines) and 

experimental profiles (Ref. [14]) of phosphorus 

diffusion in Ge measured with SIMS. 

 
 

Fig. 2. Simulated profiles (solid lines) and experimental 

profiles (Ref. [14]) of phosphorus diffusion in Ge measured 

with SRP. 

 

 

Fig. 3 shows that the ratio of the contributions to 

phosphorus diffusion via doubly negatively charged and 

triple negatively charged vacancies in germanium depends 

on the temperature from 650°C to 920 °C. According to Eq. 
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4, β is then given, in this temperature range, by the 

expression: 
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Where 0.69eV is the value of δg . 

 

 
Fig. 3. β variation with the inverse of the temperature. 

 

 

Fig. 4 shows the change of the diffusion coefficients 

via doubly and triply negatively charged vacancies 

depending on the inverse of the temperature, given by 

our simulation data.  

The temperature dependence of the intrinsic 

diffusion coefficients of P via Ge vacancies with the 

charge states 2- and 3- are best reproduced by the 

following Arrhenius expressions: 
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Where 3.09 eV and 2.4 eV respectively are the values of 

activation energies for phosphorus diffusion through 

doubly negatively charged and triply negatively charged 

vacancies.  

 

 
Fig. 4. Variation of  D2- and  D3- with the inverse of the 

temperature. 

 

5. Conclusions 
 

The phosphorus diffusion in germanium is performed by 

the vacancy mechanism via doubly negatively charged and 

triply negatively charged vacancies, where the ratio of the 

contributions is associated with temperature. This 

association is a result of the difference in the activation 

energies for phosphorus diffusion via the two states of 

charge of the vacancies which is estimated 0.69(eV). The 

ratio of the contributions to phosphorus diffusion via doubly 

negatively charged and triple negatively charged vacancies 

in germanium determined from the analysis of  phosphorus 

diffusion in Ge is best reproduced by Eq. (17). The values of 

activation energies are 3.09 eV and 2.4 eV respectively, for 

phosphorus diffusion through doubly negatively charged and 

triply negatively charged vacancies. The intrinsic diffusion 

coefficients of P via Ge vacancies with the charge states 2- 

and 3-, are given by Eq. (18) and Eq.(19), respectively. The 

understanding of phosphorus diffusion in Ge will contribute 

to meet the requirements for the fabrication of modern 

electronic nanodevices. 
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